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Abstract

Computational Imaging (CI) systems that exploit opti-
cal multiplexing and algorithmic demultiplexing have been
shown to improve imaging performance in tasks such as
motion deblurring, extended depth of field, light field and
hyper-spectral imaging. Design and performance analysis
of many of these approaches tend to ignore the role of im-
age priors. It is well known that utilizing statistical image
priors significantly improves demultiplexing performance.
In this paper, we extend the Gaussian Mixture Model as a
data-driven image prior (proposed by Mitra et. al [19])
to under-determined linear systems and study compressive
CI methods such as light-field and hyper-spectral imaging.
Further, we derive a novel algorithm for optimizing multi-
plexing matrices that simultaneously accounts for (a) sen-
sor noise (b) image priors and (c) CI design constraints.
We use our algorithm to design data-optimal multiplexing
matrices for a variety of existing CI designs, and we use
these matrices to analyze the performance of CI systems as
a function of noise level. Our analysis gives new insight
into the optimal performance of CI systems, and how this
relates to the performance of classical multiplexing designs
such as Hadamard matrices.

1. Introduction

Computational Imaging (CI) systems can be broadly cat-
egorized into two categories [20]: those designed either to
add a new functionality or to increase performance relative
to a conventional imaging system. Most of these systems
use optical coding (multiplexing) to increase light through-
put, which increases the SNR of captured images. The
desired signal is then recovered computationally via sig-
nal processing. The quality of recovered images depends
jointly on the conditioning of the optical coding and the in-
creased light throughput. A poor choice of multiplexing
will reduce image quality.
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Figure 1. Comparison of Hadamard and Sequential Optimal Multi-
plexing on Single Pixel Camera based Compressive Imaging (16 x
compression) shows improved performance for multiplexing ma-
trix that has been designed by taking image and noise statistics
into account.

1.1. Motivating Toy Problem

Consider a simple toy problem as a motivating exam-
ple. The Single Pixel Camera (SPC) [5] is a computational
imaging system that uses a fast single pixel detector along
with a Digital Micromirror array Device (DMD) to sequen-
tially multiplex an image by modulating different patterns
on the DMD. Image reconstruction is then performed by
using compressive sensing based reconstruction algorithms.
Hadamard multiplexing is considered one of the most effec-
tive ways to multiplex, but Hadamard based designs do not
effectively account for the interplay between sensor noise
and image priors (See Figure 3), resulting in slightly de-
graded performance. Our goal, in this paper is to exploit this
interplay and design better multiplexing systems that have
the potential to improve on the performance of Hadamard
multiplexing. An example result for a simulated toy patch
based single pixel camera is shown in Figure 1, showing
that careful design of multiplexing matrices result in poten-
tial performance improvements for CI systems.

1.2. Summary of Paper

A systematic framework for the design, optimization and
analysis of CI systems has so far been difficult since three
factors 1) multiplexing matrix, 2) sensor noise characteris-
tics and 3) signal prior all affect imaging performance sig-
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Figure 2. Comparison of popular methods for design of multi-
plexing matrices in terms of three important characteristics: (1)
whether they account for sensor noise (2) whether they model sig-
nal priors (3) whether they account for imaging constraints.

nificantly. Recently, Mitra et. al, [19] showed a framework
for analyzing fully determined CI systems using a Gaussian
Mixture Model (GMM). In this paper, we extend this in two
important ways:

e Sequential Optimal Multiplexing Design: We use
sequential optimization to compute multiplexing ma-
trices that maximize imaging performance while tak-
ing into account (a) sensor noise (b) image priors and
(c) imaging constraints. We use this design method to
demonstrate that it is indeed possible to beat the perfor-
mance of Hadamard matrices if multiplexing matrices
are designed collaboratively with signal priors.

e Extend Results to Compressive CI systems: We
extend the results of [19] to study compressive CI
systems such as light-field capture and hyperspectral
imaging and analyze multiple CI systems as a function
of the ambient light level. This analysis results in three
important principles highlighted in Section 2.1.

2. Multiplexing Matrix Design

Classical Multiplexing Matrices. Hadamard matrices
are widely known to be highly optimal matrices for com-
putational imaging. These matrices were first used in spec-
troscopy to increase the amount of captured light by mea-
suring a sequence of linear combinations of spectral sam-
ples that are then reconstructed by inverting a linear sys-
tem. In the seminal work by Harwit and Sloan [11]. it
was demonstrated that Hadamard and S-matrices are op-
timal when the predominant source of noise is signal in-
dependent (i.e. read noise). Since then, Hadamard, and
closely related MURA [10] codes, have been used for a
number of computational imaging tasks such as hyperspec-

tral imaging [25], illumination multiplexing [22], and light
field imaging [14, 17].

Multiplexing Matrix Optimization. Hadamard codes
are optimal when multiplexing matrices are dense. How-
ever, a number of computational imaging tasks, such as de-
focus and motion deblurring, involve relatively sparse ma-
trices. In these cases, Hadamard multiplexing is no longer
an option, and alternative codes must be found. A variety
of coded aperture optimization techniques have been intro-
duced, such as those by Veeraraghavan et al. [24], Zhou et
al. [29] and Levin et al. [15]. In addition, several motion
deblurring code optimizations have been introduced such
as those by Raskar et al. [21] Agrawal et al. [1]. All of
these codes perform worse than Hadamard and S-matrices
because, unlike Hadamard, they do not produce a flat sin-
gular value spectrum.

Incorporating Signal Dependent Noise. Hadamard
matrices are optimal when read noise is dominant. How-
ever, the lighting levels commonly encountered in photogra-
phy are such that photon noise tends to dominate, and there-
fore, Hadamard matrices are no longer optimal. Wuttig and
Ratner et al. [26, 22] introduced techniques to optimize mul-
tiplexing matrices taking photon noise into account. Their
technique was used to find multiplexing matrices that per-
form better than Hadamard when moderate amounts of sig-
nal dependent noise are present. However, the analysis does
not take signal priors into account, and as a result the opti-
mizations produce suboptimal matrices at large light levels.

Incorporating Signal Priors. Analysis taking signal
priors into account is essential to characterize modern com-
putational imaging systems. The performance limits of im-
age denoising algorithms was characterized by [3, 16]. Mi-
tra et al. [19] used a GMM framework to extended this anal-
ysis to general computational imaging systems. The work
decoupled the performance gain due to multiplexing from
the gain due to use of signal priors. They showed that there
is significant performance gains to be had that can be at-
tributed to multiplexing alone. However, their analysis was
restricted to fully-determined CI systems, and they did not
consider data driven multiplexing designs.

2.1. Our Main Contribution

In this work, we show how data driven multiplexing de-
sign can be used to improve performance above and be-
yond classical multiplexing matrices such as Hadamard and
MURA. The key idea is to optimize multiplexing matrices
while taking into account both the noise level of the sen-
sor and a model of the scene. Our work is closely related
to the problem of projection matrix design in compressed
sensing, where sparsity is used as a signal prior, and ma-
trices are optimized in terms of properties such as incoher-
ence or RIP [7, 6]. Both sparsity [18, 23] and PCA [2] sig-



nal priors have been used to design multiplexing matrices
for compressive light field acquisition. Works such as this
have demonstrated that data driven design can bring im-
provements to CI. However, thus far noise levels and data
models have not been considered jointly. In this work, we
provide a missing link between these two key parameters in
multiplexing design. We use a sequential optimization tech-
nique together with a GMM analysis framework to analyze
optimal CI systems. The significance of our optimization
technique is illustrated in Figure 2, where we categorize dif-
ferent coding methods according to whether they take into
account sensor noise, image priors, or imaging constraints
such as non-negativity. The only previous method taking
all three into account is the coded aperture work by Zhou et
al. [29]. Our optimization framework is the first to take all
three into account for general CI systems, including com-
pressed sensing systems. Our analysis has culminated in
the following three significant principles:

Principle 1: Ar low light levels, both classical (e.g.
Hadamard) and data-optimal multiplexing matrices im-
prove performance significantly.

Principle 2: At high light levels, classical (e.g. Hadamard)
multiplexing matrices do not improve performance, even
when signal priors are taken into account.

Principle 3: Over the entire range of light levels, data op-
timized multiplexing matrices that exploit signal and noise
statistics perform better than classical multiplexing. How-
ever, a significant performance increase is only achieved for
high light levels.

To the best of our knowledge, we are the first to observe
these interesting phenomena. The consequence of obser-
vations 1 and 3 is that the performance of classical multi-
plexing matrices such as Hadamard can be beat using data
driven optimization. However, data driven performance will
only be better at high light levels. At low light levels, the
advantage of increased light throughput outweighs the ben-
efit of scene-specific sensing. In the following sections,
we first describe the modeling/design framework and then
demonstrate these three principles for two CI applications:
compressive Hyperspectral (HS) imaging and compressive
Light Field (LF) acquisition.

3. GMM based CI Analysis

We briefly summarize the analysis framework for CI sys-
tems proposed by Mitra et al. [19]. We assume a lin-
ear imaging model, affine noise model and GMM signal
prior model. We then use the minimum mean square er-
ror (MMSE) and SNR gain to characterize the performance
of CI systems.

Image Formation Model. Many compressive CI sys-

tems are linear and hence can be modeled as
y=Hx+n, (D

where y € RY is the measurement vector, x € RY is the
unknown signal we want to capture, H is the N x N multi-
plexing matrix and n is the observation noise.

Noise Model. [12, 28] is used. Signal independent noise
is modeled as a Gaussian random variable with variance o2.
Signal dependent photon noise is Poisson distributed with
Poisson parameter equal to the average signal intensity at a
pixel J. Photon noise is approximated by a Gaussian distri-
bution with mean and variance .J, which is a good approx-
imation when J > 10. We approximate per-pixel photon
noise using a single noise variance equal to the average sig-
nal intensity.

Signal Prior Model Properties. Firstly, GMMs satisfy
the universal approximation property which says that any
probability density function can be approximated to any fi-
delity using a GMM with an appropriate number of mix-
tures. Secondly, a GMM prior lends itself to analytical
tractability so that we can use MMSE as a metric to charac-
terize the performance of CI systems.

Performance Characterization. The system perfor-
mance of any given CI system, characterized by the
multiplexing matrix H, is given by the MMMSE error
mmse(H), computed under the GMM signal prior and
Gaussian noise model. The GMM distribution is spec-
ified by the number of Gaussians K, the probability of
each Gaussian pg, and the mean and covariance matrix

(u;k), C’g(f;)) of each Gaussian:

K
fl@) = pN (@, ch). 2)

k=1

Noise is modeled as a Gaussian variable N (0, C),;,). Flam
et al. [8] have derived the expression for MMSE. However,
MMSE can not be computed analytically. They also provide
an analytic lower bound for the MMSE, which is shown to
be a very good approximation to the exact value for multi-
plexed systems [19]. We use this expression for our analysis
of compressive CI systems. The lower bound is given by:

K
mmse(H) > Zkar(Ci];L), where 3)
k=1

=B —CcEHT(HCHHT +C,n) T HOW. (4)

While comparing various CI systems, we have chosen
one of the systems as a reference system H,.; and com-
pared the performance of the other systems in terms of that.
For this we have used SNR gain G(H ) (in dB) defined as:

mmse(Hyey)
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Figure 3. Our sequential optimal design algorithm vs. other commonly used design algorithms: Unlike PCA and Hadamard based designs,
our design approach takes both the signal and noise statistics into account and sequentially selects projection directions that are oriented
along the posterior distribution after accounting for previous measurements and noise statistics.

4. Sequential Optimal Design

We propose a sequential optimal design algorithm based
on minimizing the MMSE error. As discussed in the previ-
ous section, MMSE can be well approximated by (3). Our
goal is to find the H matrix, which minimizes mmse(H).
This amounts to solving the following optimization prob-
lem:

(k)2 7T (k) 7T -1
InHaX Z TT(HCLL H (HOQ;I H + C(’rm) )
with H, ; € (0,1).  (6)

We have introduced binary constraints on the elements of H
due to practical consideration in code designs for imaging
systems. The above optimization problem is a combinato-
rial problem and hence difficult to optimize. If we consider
the brute force algorithm of evaluating every possible in-
stances of the H matrix, then we have to evaluate through
2™ choices, where m and n are the rows and columns of
H, respectively. The exponential dependence on the prob-
lem size makes such a brute force search intractable.

To simplify the optimization, we consider a sequential
approach where we optimize one row of the H matrix at a
time and update the posterior covariance matrices after each
iteration. A schematic diagram of our algorithm is shown in
Figure 3, where we compare our design approach with other

popular designs such as PCA and Hadamard matrices. Our
design approach takes both the signal and noise statistics
into account. We find the first projection direction (i.e., the
first row of H) by minimizing the MMSE error. We then
update the posterior signal prior and find the next direction
(next row of H) and so on. Note that unlike PCA, which
takes into account only the signal prior and not the noise
statistics, our projections for low vs. high noise cases are
different. When the noise variance is much smaller than the
signal variance, our method produces results very similar to
PCA. However, when the noise is large, our method tends
to continue measuring in the direction the largest singular
vector (see Figure 3, bottom-left). Note that this strategy
ensures that each measurement has the largest ratio of signal
to noise variance. The strategy is more optimal than PCA
because projecting along the other singular vectors will sim-
ply produce measurements flooded with noise, significantly
reducing SNR.

Our algorithm also outperforms classical multiplexing
matrices such as Hadamard, which is independent of both
signal and noise statistics. In general, the projection di-
rection of Hadamard matrices will not be aligned with the
signal, causing less signal variance to be captured relative
to the noise variance, reducing the SNR. For simplicity we
have illustrated our algorithm using a Gaussian signal prior
(i.e., GMM with a single Gaussian) and we use the energy



constraint on the rows of multiplexing matrix rather than the
binary constraint on each element.

Our algorithm works as follows. Consider the 7 it-
eration with the current posterior covariances given by
ck then the 7*" row of H is obtained by solving:

z|y,i—1°

ho® T

zly,i—1 "7
hC® BT 4 Con)

x|y,i—1""1

with h; € (0,1).  (7)

}Ali = arg II}L%XZ (

Note that for the first iteration ¢ = 1, the initial poste-
rior covariances are equal to the prior GMM covariances,
C’f ly,0 = Cg(cli). We then update each of K posterior covari-
ance matrices by:

(k) _ (k) _
Cz|y,7i _Ca:|y,i71
k) 2T k)G 15 Ak
Ci|;,i—1h?(hica(s|£,i—1hf + Chn) lhicg(c‘;_’i_y
3)

Note that optimization problem of Equation (7), though
simpler than the original problem in Equation (6), is still
combinatorial. However, the search space is much smaller.
For each row, we have to evaluate 2™ instances of h;. Thus
the number of total evaluations is m2"™, which is much
smaller than the 2™ evaluations required for the original
problem. In the compressive hyper-spectral experiments,
Section 5, where we consider the design of multiplexed as-
sorted pixels, we reduce the original problem of evaluating
2256 instances to a manageable 16 x 2'6 instances using our
sequential approach.

To summarize, our sequential optimization algorithm
significantly reduces the computational complexity relative
to a brute force search for an optimal binary mask. How-
ever, the sequential approach is a greedy algorithm and
there is no guarantee that the optimal sequential mask is
the global optimal. Nevertheless, using this approach, we
were able to demonstrate considerable improvements over
current designs, as discussed in Sections 5 and 6.

5. Compressive Hyper-spectral Imaging

We consider three different snapshot compressive hyper-
spectral camera designs for analysis: CASSI-Dual Disper-
sion [9], multimodel LF camera [13] and the Generalized
Assorted Pixel (GAP) camera architecture [27]. Note that
while the CASSI-DD system is the only system advertised
as a compressive camera, all three architectures can be com-
pressive provided the appropriate reconstruction algorithm
is used. Each architecture implements a different sampling
of the hyper-spectral volume. The purpose of this sec-
tion is to compare the performance of these three sampling
schemes and show how performance can be improved using
our sequential optimal design algorithm.

5.1. Performance Comparison

Figure 4(a) shows the results of our performance com-
parison and Figure 5 shows example reconstructions for
each system (at a moderate light level). We plot the SNR
gain (over multimodal LF used in the plot as baseline) for
different values of photon-to-read noise .J /o2 ratio[4, 19].

Main Result: CASSI-DD, which uses Hadamard multi-
plexing, has a large advantage over other systems in low
light. In high light, CASSI-DD and GAP have similar per-
formance.

5.1.1 Simulation Parameters

GMM Model. We learn GMM patch prior of patch size
8 x 8 x 16 using the CAVE hyper-spectral dataset [27]. This
allows use to reconstruct an M x N x 16 hyper-spectral
image from a single M x N captured image.

CASSI-DD. We use the 1-D cyclic S-matrix code in the
coding aperture, as reported in the paper [9]. We use the
codeword >1001000111101010’ to encode 16 spectral chan-
nels. Codewords are tiled and cyclically shifted by 4 pixels
between consecutive rows to form the complete 2D code
that is placed in the intermediate image plane of the system.
Multimodal Light Field Camera. We consider a 4 x 4
array of narrow-band color filters in the pupil plane, corre-
sponding to 16 spectral channels. Instead of a pinhole array
LF camera as in [13], we consider a lenselet based LF cam-
era, which has better light throughput.

Generalized Assorted Pixels. We create a 4 x 4 narrow-
band color filters pattern, then tile this to create the entire
2D color filter array that is placed on the sensor.

5.2. Optimized Performance

We used our sequential optimization algorithm to search
for good multiplexing codes for the three systems at differ-
ent light levels. Figure 4(b) shows the SNR gains of the
optimized systems with the original multimodal LF as the
reference system. Note that optimization does not change
performance significantly for CASSI-DD because the sys-
tem has fewer design parameters (only 16 as compared to
256 of multiplexed GAP). Example codes for the optimized
GAP are shown in Figure 6. Because it it takes noise into
account, our sequential optimization algorithm produces re-
peated all-one spectral filters in low light whereas in high
light we obtain diverse spectral filters.

Main Result: In low light, all designs that exploit mul-
tiplexing to improve light throughput, give similar perfor-
mance. However, in bright light, the data-optimized GAP
performs significantly better than classical designs.

5.2.1 Simulation Parameters

CASSI-DD. We search for a length 16 binary codeword.
This corresponds to just 2'6 = 65536 evaluations of the
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Figure 4. Original vs. optimized compressive hyper-spectral systems: (Left) performance of CASSI-Dual Dispersion [9], multimodal LF
camera [13] and GAP camera [27]. The SNR gain (with multimodal LF as reference) for different values of photon-to-read noise ratio
(J/o?). CASSI-DD, which uses Hadamard multiplexing, performs better in low light. In high light, CASSI-DD and GAP have similar
performance. (Right) Data-driven optimization of the masks/filters results in improved performance for all systems. Optimized GAP

camera achieves the best performance.
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Figure 5. Comparison of original and optimized hyper-spectral systems for a sample dataset shows improved performance. These simula-

tions correspond to moderate light level J/o® = 50.
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Figure 6. Optimized spectral filters for GAP: The optimized 16 spectral filters each of length 16 (arranged as 16 x 16 matrices with each
column being a spectral filter) for different light levels. Our sequential optimization algorithm takes noise statistics into account and hence
at low light levels we obtain repeated all-one spectral filters whereas at high light we obtain diverse spectral filters.

MMSE.

Multimodal LF and GAP. We design spectral filters for a
4 x 4 filter array. Using our sequential approach, we find the
first 16-length codeword, update the posterior covariance,
find the next codeword and so on. This, requires evaluating
the MMSE for just 16 x 216 instances (as compared to 226
evaluations of the brute-force search).

6. Compressive Light Field Imaging

We study the performance of mask based light field
systems of Veeraraghavan et al. [24], Lanman et al.
[14], Horstmeyer et al. [13], along with our sequen-
tially optimized mask design. We also consider perfor-
mance improvements from multi-frame acquisition as in
[18]. Though some of these systems have not been adver-
tised as compressive, we use our GMM LF prior to recon-
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Figure 7. Classical vs. optimized compressive LF systems: For
snapshot LF capture, data-optimized multiplexing performs simi-
lar to classical multiplexing. The performance of multi-frame cap-
ture is plotted as the dotted black line (2-frames) and the solid
black line (5-frames). For multi-frame capture, data-optimized
multiplexing performs much better in high light.

struct a full spatial resolution light field for each technique.
Figure 7 shows the SNR gain vs. photon-to-read noise ratio
and Figure 8 shows simulations in extremely low light.

Main Result: Data-optimal masks perform slightly better
than traditional masks for snapshot based compressive LF
capture. However, for multi-frame LF capture, data opti-
mal masks improve performance significantly in high light
levels.

Recently Marwah et. al [18] performed an empirical
analysis of mask based light-field cameras. One of the main
conclusions was that increasing the number of images ac-
quired improves performance significantly. Our analysis in
Figure 7 supports this claim and shows that classical multi-
plexing masks (e.g. MURA) are close to optimal for com-
pressive snapshot LF capture. On the other hand, data-
driven optimization for multi-frame compressive LF cap-

ture can increase performance significantly. However, the
greatest performance advantage comes at high light levels.

6.1. Simulation Parameters

GMM Model. We learn a GMM patch prior of patch size
10 x 10 x 5 x 5 using the MIT LF dataset [18]. This allows
use to reconstruct an M x N x 5 x 5 LF data from a single
M x N captured image.

Mask based LF. All the systems that we consider are mask
based LF cameras with the mask placed near the sensor. To
design cameras that capture a LF with 5x5 angular resolu-
tion, we periodically tile a 5x5 code to create the full 2D
mask. The masks that we consider are Sum-of-Sinusoid
(SoS) [24], MURA [14], pinhole [13] and our optimized
mask. Since the basic mask is of size 5 x 5, we search for
binary mask of this dimension, which results in 225 evalua-
tions of MMSE. For our multi-frame optimization we use
our sequential algorithm to find a mask, update the pos-
terior covariance, then find the next. Thus we perform
#Mask x 225 MMSE evaluations.

7. Discussions and Conclusions

Summary. We exploit a GMM prior based model for ana-
lyzing compressive computational imaging systems and de-
velop a novel sequential algorithm for optimizing the multi-
plexing matrices for such systems. The results of our anal-
ysis conclusively demonstrate that multiplexing matrices
which simultaneously account for sensor noise and signal
priors do indeed result in performance improvements over
classical multiplexing matrices such as Hadamard.

Limitations. Our framework requires learning a GMM
prior. Since learning GMMs is intractable for data greater
than a few thousand dimensions, we learn all our GMM
models on patches instead of on full resolution light fields
and spectral data. This means that the approach can only be
used to study multiplexing systems that result in fairly local



multiplexing. The sequential optimization algorithm is not
guaranteed to solve the globally optimal mask but rather
is a greedy approximation to the optimal mask. The op-
timization procedure described here only applies to masks
that are constrained to be binary and a new algorithm needs
to be developed to tackle non-binary masks. The optimal
masks developed here are attempting to reduce the Lo error
in the intensity space. While, this is a reasonable metric, in
several imaging scenarios perceptual metrics or metrics that
preserve texture information may be more appropriate.
Future Work. Development of better techniques for learn-
ing GMMs accurately without suffering from local min-
ima issues, especially in high dimensional settings, is an
important problem worthy of significant future effort. In
the case of light-field and hyper-spectral imaging, our de-
sign methodology results in an improved mask. In future,
we would like to implement physical prototypes with these
masks and demonstrate improved performance.
Conclusions. In summary, we believe that data driven de-
sign of multiplexing matrices is an important problem that
deserves further study. We have taken a few first steps in this
direction. We hope that this will motivate new approaches
to tackle the problem using varying techniques such as in-
coherence, RIP, and other statistical techniques.
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